| 
 Sains Malaysiana 52(10)(2023): 2955-2970
                
           http://doi.org/10.17576/jsm-2023-5210-17
            
           
             
           Effects of High-Energy Electron Beam Irradiation on the Structure,
            Composition and Morphological Properties of Graphene Nanoplatelet Films 
  
 (Kesan Penyinaran Rasuk Elektron Bertenaga Tinggi pada Struktur, Komposisi dan Sifat Morfologi Filem Nanoplatelet Grafin)
            
           
             
           NURUL HIDAYAH MOHAMAD NOR1,2,*, NUR
            AFIRA ANUAR1, NOOR AZRINA TALIK1, WAN AHMAD TAJUDDIN WAN
            ABDULLAH2, KRITSADA KITTIMANAPUN3, HIDEKI NAKAJIMA3,
              NARONG CHANLEK3,
                MOHD FAKHARUL ZAMAN RAJA YAHYA4 & BOON TONG GOH1
  
 
             
           1Low Dimensional Material
            Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  
           2National Centre for
            Particle Physics, Universiti Malaya, 50603 Kuala Lumpur,
            Malaysia
  
           3Synchrotron Light
            Research Institute, Nakhon Ratchasima 30000, Thailand
  
           4Faculty of Applied
            Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  
           
             
           Received: 18 August 2023/Accepted: 21
            September 2023
            
           
             
           Abstract
            
           This work demonstrated the effects
            of 1.2 GeV high-energy electron beam irradiation on a few-layers of graphene
            (FLG) and multi-layer graphene (MLG) films grown via an in-house hot wire
            chemical vapour deposition (HWCVD) system. The FLG and MLG films were grown on
            highly doped n-type c-Si (100) substrates which were pre-treated using argon
            plasma (50 W) for 1 min and 10 min, respectively. The as-prepared samples were
            then irradiated using a 1.2 GeV high-energy electron beam with a dosage of 1.2
  × 109 e-/cm2 at atmospheric and room
            temperature ambient conditions. The effects of the
              irradiation-mediated defects on the carbon lattice structure of both graphene
              samples were validated from the decreased sp2 C=C carbon content,
              and the increase in the adventitious carbon contamination C-O-C content.
            Raman results showed an elevation of the ID/IG ratio and
            blue-shift of the 2D and G band peaks for both the irradiated samples, which
            validated the mediated defects due to the dislocation of carbon atoms in the
            graphene sheets. The blue-shifted of 2D and G peaks were
              much more significant in the MLG than FLG which may indicate a better
                self-reconstructing property for the MLG atomic network, compared to the FLG.
            The stability of the films against high-energy electron beam irradiation was
            validated by their conductivity and surface topography. In conclusion, HWCVD
            grown graphene nanoplatelet films have high potential
            for graphene-based high-energy charged particle detectors.
  
           
             
           Keywords: Graphene;
            high-energy electron beam; HWCVD; nanoplatelets;
            radiation tolerance
  
 
             
           Abstrak
            
           Kajian ini
            menunjukkan kesan penyinaran radiasi elektron bertenaga tinggi 1.2 GeV pada
            beberapa lapisan grafin (FLG) dan berbilang lapisan grafin (MLG) yang
            dihasilkan melalui kaedah wayar panas pemendapan wap kimia (HWCVD). Filem FLG
            dan MLG dihasilkan pada permukaan substrat c-Si (100) jenis-n berdop tinggi
            yang telah dirawat terlebih dahulu menggunakan plasma argon (50 W) selama 1
            minit dan 10 minit. Sampel yang telah disediakan kemudiannya disinari menggunakan
            radiasi elektron bertenaga tinggi 1.2 GeV dengan dos 1.2 × 109 e-/cm2 pada keadaan atmosfera dan suhu bilik. Kesan radiasi dalam menghasilkan
            kecacatan pada struktur kekisi karbon kedua-dua sampel grafin telah disahkan
            daripada pengurangan kandungan karbon sp2 C=C serta peningkatan
            kandungan kontaminasi karbon adventif C-O-C. Analisis Raman menunjukkan
            peningkatan nisbah ID/IG dan anjakan-biru bagi puncak
            jalur 2D dan G untuk kedua-dua sampel yang disinari, yang mengesahkan kecacatan
            pengantara disebabkan oleh kehelan atom karbon dalam helaian grafin.
            Anjakan-biru puncak 2D dan G adalah lebih ketara dalam MLG berbanding FLG yang
            mungkin menunjukkan sifat membina semula diri yang lebih baik untuk rangkaian
            atom MLG, berbanding FLG. Kestabilan filem terhadap penyinaran radiasi elektron
            bertenaga tinggi telah disahkan oleh kekonduksian dan topografi permukaannya.
            Kesimpulannya, filem nanoplatelet grafin yang dihasilkan menggunakan kaedah
            HWCVD ini mempunyai potensi tinggi untuk menghasilkan pengesan zarah bercas
            tenaga tinggi berasaskan grafin.
  
           
             
           Kata kunci: Grafin; HWCVD; nanoplatelet; sinaran elektron bertenaga tinggi; toleransi radiasi
            
           
             
           REFERENCES
            
           Al-Harthi, S.H., Elzain, M., Al-Barwani, M., Kora'a, A., Hysen, T., Myint, M.T. & Anantharaman,
            M.R. 2012. Unusual surface and edge morphologies, sp2 to sp3 hybridized transformation and electronic damage after Ar+ ion irradiation of few-layer graphene surfaces. Nanoscale Research Letters 7: 466. https://doi.org/10.1186/1556-276x-7-466 
              
 Ang, P.K., Chen, W., Wee, A.T. & Loh,
            K.P. 2008. Solution-gated epitaxial graphene as pH sensor. Journal of the
              American Chemical Society 130(44): 14392-14393.
            https://doi.org/10.1021/ja805090z
  
           Anuar, N.A., Nor, N.H., Awang, R. binti, Nakajima, H., Tunmee,
            S., Tripathi, M., Dalton, A. & Goh, B.T. 2021.
            Low-temperature growth of graphene nanoplatelets by
            hot-wire chemical vapour deposition. Surface and Coatings Technology 411: 126995. https://doi.org/10.1016/j.surfcoat.2021.126995
  
           Asif, M., Tan, Y., Pan, L., Li, J., Rashad, M. &
            Usman, M. 2015. Thickness controlled water vapors assisted growth of multilayer graphene by ambient pressure chemical vapor deposition. The Journal of Physical Chemistry C 119(6): 3079-3089. https://doi.org/10.1021/jp510106w
  
           Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng,
            Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y-J., Kim, K.S., Özyilmaz,
            B., Ahn, J-H., Hong, B.H. & Iijima,
            S. 2010. Roll-to-roll production of 30-inch graphene films for transparent
            electrodes. Nature Nanotechnology 5(8): 574-578.
            https://doi.org/10.1038/nnano.2010.132
  
           Chandra, N., Sharma, V., Chung, G.Y. & Schroder,
            D.K. 2011. Four-point probe characterization of 4H silicon carbide. Solid-State
              Electronics 64(1): 73-77. https://doi.org/10.1016/j.sse.2011.07.004
  
           Chatzikyriakou, E., Smyrnis, C.
  & Chatwin, C. 2014. Monte Carlo simulation of
            electron and proton irradiation of carbon nanotube and graphene transistors. Advances
              in Microelectronic Engineering (AIME) 2(2): 33-37.
  
           Childres, I., Jauregui, L.A., Foxe, M., Tian, J., Jalilian, R., Jovanovic, I. &
            Chen, Y.P. 2010. Effect of electron-beam irradiation on graphene field effect
            devices. Applied Physics Letters 97(17): 173109. https://doi.org/10.1063/1.3502610
  
           Cooper, D.R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E.
  & Yu, V. 2012. Experimental review of graphene. ISRN Condensed Matter
    Physics 2012: 501686. https://doi.org/10.5402/2012/501686
  
           Cummings, A.W., Duong, D.L., Nguyen, V.L., Van Tuan,
            D., Kotakoski, J., Barrios Vargas, J.E., Lee, Y.H.
  & Roche, S. 2014. Charge transport in polycrystalline graphene: Challenges
            and opportunities. Advanced Materials 26(30): 5079-5094.
            https://doi.org/10.1002/adma.201401389
  
           Díaz, J., Paolicelli, G.,
            Ferrer, S. & Comin, F. 1996. Separation of the sp3 and sp2 components in the C1s photoemission spectra of
            amorphous carbon films. Physical Review B 54(11): 8064-8069.
            https://doi.org/10.1103/physrevb.54.8064
  
           Dresselhaus, M.S., Dresselhaus,
            G., Saito, R. & Jorio, A. 2005. Raman
            spectroscopy of carbon nanotubes. Physics Reports 409(2): 47-99.
  
           Elakrmi, E., Chaâbane, R.B. & Ouada, H.B. 2011. Structure and electrical properties of
            nanostructured zinc oxide films prepared for optoelectronic applications. Physical
              Sciences 2(1): ea0111.
            https://doi.org/https://akademeia.ca/pdf/vol2-iss1/Elakrmietal(2012)-2-1-ea0111.pdf
  
           Greczynski, G. & Hultman, L. 2020.
            X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Progress
              in Materials Science 107: 100591.
            https://doi.org/10.1016/j.pmatsci.2019.100591
  
           Haerle, R., Riedo,
            E., Pasquarello, A. & Baldereschi,
            A. 2002. sp2/sp3 hybridization ratio in
            amorphous carbon from C1s core-level shifts: X-ray photoelectron
            spectroscopy and first-principles calculation. Physical Review B 65:
            045101.
  
           Iqbal, M.Z., Kumar Singh, A., Iqbal, M.W., Seo, S. & Eom, J. 2012.
            Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition. Journal of Applied Physics 111(8):
            084307. https://doi.org/10.1063/1.4704197 Kang, J., Duan, Y., Gao, W., Li, H., Li, C., Zhao, X. & Zhu, C. 2022. Transparency of graphene membranes to eV-scale electrons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1031:166521.
           Karamat, S., Sonuşen, S., Dede, M., Uysallı, Y., Özgönül, E. & Oral, A. 2015. Coalescence of few layer
            graphene grains grown by chemical vapor deposition
            and their stacking sequence. Journal of Materials Research 31(1): 46-54.
            https://doi.org/10.1557/jmr.2015.350
  
           Kim, K-J., Choi, J., Lee, H., Lee, H-K., Kang, T-H.,
            Han, Y-H., Lee, B-C., Kim, S. & Kim, B. 2008. Effects of 1 MeV electron
            beam irradiation on multilayer graphene grown on 6H-sic(0001). The Journal of Physical Chemistry C 112(34): 13062-13064.
            https://doi.org/10.1021/jp805141e
  
           Kittimanapun, K., Chanlek, N., Lakrathok, A. & Laoiamnongwong, N.
            2018. Low intensity electron beam measurement at SLRI beam test facility. Proc. 9th
              Int. Particle Accelerator Conf. (IPAC'18). pp. 4502-4504.
                https://doi.org/10.18429/JACoW-IPAC2018-THPMK086
  
 Kittimanapun, K., Chanlek, N., Juntong, N., Cheedket, S., Klysubun, P.,
            Krainara, S., Sittisard, K. & Supajeerapan, S. 2016. SLRI beam test
            facility development project.  Proc. 7th Int. Particle Accelerator Conf. (IPAC'16). pp.
              2539-2541. doi: 10.18429/JACoW-IPAC2016-WEPMY002
  
 Kochat, V., Nath Pal, A., Sneha, E.S., Sampathkumar, A., Gairola, A., Shivashankar, S.A., Raghavan, S. & Ghosh, A. 2011. High contrast imaging
            and thickness determination of graphene with in-column secondary electron
            microscopy. Journal of Applied Physics 110(1): 014315.
            https://doi.org/10.1063/1.3608062
  
           Krasheninnikov, A.V. & Banhart,
            F. 2007. Engineering of nanostructured carbon materials with electron or ion
            beams. Nature Materials 6(10): 723-733. https://doi.org/10.1038/nmat1996
  
           Kumari, R., Singh, F., Yadav, B.S., Kotnala,
            R.K., Peta, K.R., Tyagi, P.K., Kumar, S., Puri, N.K. 2017. Ion irradiation-induced, localized sp2 to sp3 hybridized carbon transformation in walls of multiwalled carbon nanotubes. Nuclear Instruments and
              Methods in Physics Research Section B: Beam Interactions with Materials and
              Atoms, 412 : 115–122.
            https://doi.org/10.1016/j.nimb.2017.09.019
  
           Lee, C., Wei, X., Kysar,
            J.W. & Hone, J. 2008. Measurement of the elastic properties and intrinsic
            strength of monolayer graphene. Science 321(5887): 385-388.
            https://doi.org/10.1126/science.1157996
  
           Lee, C., Kim, J., Kim, S.,
            Chang, Y.J., Kim, K.S., Hong, B. & Choi, E.J. 2016. Strong hole-doping and
            robust resistance-decrease in proton- irradiated graphene. Nature Publishing
              Group 6: 21311.
  
 Lesiak, B., Kövér, L., Tóth, J., Zemek, J., Jiricek, P., Kromka, A. & Rangam, N. 2018. C sp2/sp3 hybridisations in carbon nanomaterials - XPS and (X)AES study. Applied
            Surface Science 452: 223-231. https://doi.org/10.1016/j.apsusc.2018.04.269
  
           Li, Y., Li, J., Jia, C. & Liu, X. 2012. Fabrication of tungsten films
            by metallorganic chemical vapor deposition. International
              Journal of Minerals, Metallurgy, and Materials 19(12): 1149-1153.
  
           Liao, W., Alles,
            M.L., Zhang, E.X., Fleetwood, D.M., Reed, R.A., Weller, R.A. & Schrimpf, R.D. 2019. Monte Carlo simulation of displacement
            damage in graphene. IEEE Transactions on Nuclear Science 66(7):
            1730-1737.
  
           Lin, Y.M., Jenkins, K.A., Valdes-Garcia, A., Small,
            J.P., Farmer, D.B. & Avouris, P. 2009. Operation
            of graphene transistors at gigahertz frequencies. Nano Letters 9(1):
            422-426. https://doi.org/10.1021/nl803316h
  
           Liu, G., Teweldebrhan, D.
  & Balandin, A.A. 2011. Tuning of graphene
            properties via controlled exposure to electron beams. IEEE Transactions on
              Nanotechnology 10(4): 865-870. https://doi.org/10.1109/tnano.2010.2087391
  
           Lu, G., Ocola, L.E. &
            Chen, J. 2009. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44): 445502. https://doi.org/10.1088/0957-4484/20/44/445502
  
           Malard, L.M., Pimenta,
            M.A., Dresselhaus, G. & Dresselhaus,
            M.S. 2009. Raman spectroscopy in graphene. Physics Reports 473(5-6):
            51-87.
  
           Mathew, S., Chan, T.K., Zhan, D., Gopinadhan,
            K., Barman, A.R., Breese, M.B.H., Dhar, S., Shen,
            Z.X., Venkatesan, T. & Thong, J.T.L. 2011. The
            effect of layer number and substrate on the stability of graphene under MeV
            proton beam irradiation. Carbon 49(5): 1720-1726.
            https://doi.org/10.1016/j.carbon.2010.12.057
  
           Meyer, J.C., Eder, F., Kurasch,
            S., Skakalova, V., Kotakoski,
            J., Park, H.J., Roth, S., Chuvilin, A., Eyhusen, S., Benner, G., Krasheninnikov,
            A.V. & Kaiser, U. 2012. Accurate measurement of electron beam induced
            displacement cross sections for single-layer graphene. Physical Review
              Letters 108: 196102, Erratum 110: 239902.
            https://doi.org/10.1103/physrevlett.108.196102
  
           Moser, J., Barreiro, A. & Bachtold,
            A. 2007. Current-induced cleaning of graphene. Applied Physics Letters 91(16): 163513. https://doi.org/10.1063/1.2789673
  
           Murakami, K., Kadowaki, T. & Fujita, J. 2013. Damage and strain in
            single-layer graphene induced by very-low-energy electron-beam irradiation. Applied
              Physics Letters 102: 043111.
  
           Nor, N.H.M., Anuar, N.A., Abdullah, W.A.T.W., Goh, B.T. & Yahya, M.F.Z.R. 2022. A Geant4 simulation on the
            application of multi-layer graphene as a detector material in high-energy
            physics. Sains Malaysiana 51(10): 3423-3436.
  
           Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z.
  & Sheehan, P.E. 2008. Reduced graphene oxide molecular sensors. Nano
    Letters 8(10): 3137-3140. https://doi.org/10.1021/nl8013007
  
           Röhr, J.A., Moia, D., Haque, S.A., Kirchartz, T. &
            Nelson, J. 2018. Exploring the validity and limitations of the mott–gurney law for charge-carrier mobility determination
            of semiconducting thin-films. Journal of Physics: Condensed Matter 30(10): 105901. https://doi.org/10.1088/1361-648x/aaabad
  
           Ryu, S., Liu, L., Berciaud, S., Yu, Y., Liu, H., Kim, P., Flynn, G.W. & Brus, L.E. 2010. Atmospheric oxygen binding and hole doping
            in deformed graphene on a SiO2 substrate. Nano Lett. 10(12):
            4944-4951.
  
           Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson,
            M.I. & Novoselov, K.S. 2007. Detection of
            individual gas molecules adsorbed on graphene. Nature Materials 6(9):
            652-655. https://doi.org/10.1038/nmat1967
  
           Serry, M., Sharaf, A.H., Emira, A., Abdul-Wahed, A. &
            Gamal, A. 2015. Nanostructured graphene–Schottky junction low-bias radiation sensors. Sensors and Actuators A: Physical 232: 329-340. https://doi.org/10.1016/j.sna.2015.04.031
  
           Shulman, H. & Ginell,
            W.S. 1970. Nuclear and Space Radiation Effects on Materials. NASA Space
            Vehicle Design Criteria (Structures).
  
           Slobodian, O.M., Tiagulskyi, S.I., Nikolenko, A.S., Stubrov, Y., Gomeniuk, Y.V., Lytvyn, P.M.
  & Nazarov, A.N. 2018. Micro-raman spectroscopy and electrical conductivity of graphene layer on SIO2 dielectric subjected to electron beam irradiation. Materials Research
    Express 5(11): 116405. https://doi.org/10.1088/2053-1591/aadde3 Song, W., Lee, S. Il, Kim, Y., Jung, D.S., Jung, M.W., An, K.S. & Park, C.Y. 2013. Effect of MeV electron beam irradiation on graphene grown by thermal chemical vapor deposition. Japanese Journal of Applied Physics 52(12).
              
           Syed, M.H. 2017. Growth and characterization
            of graphene and graphene/Copper oxide nanocomposites by hot-filament thermal
            chemical vapor deposition for flexible pressure sensor application. University
            of Malaya. Thesis (Unpublished) http://studentsrepo.um.edu.my/7208/
            
           Syed, M.H., Chong, S.K.,
            Huang, N.M. & Abdul Rahman, S. 2015. Fabrication of high-quality graphene
            by hot-filament thermal chemical vapor deposition. Carbon 86: 1-11.
  
           Teweldebrhan, D. & Balandin, A.A.
            2009. Modification of graphene properties due to electron-beam irradiation. Applied
              Physics Letters 94(1): 013101. https://doi.org/10.1063/1.3062851
  
           Turgeon, S. & Paynter, R.W.U. 2001. On the determination of carbon sp2/sp3 ratios in polystyrene-polyethylene copolymers by photoelectron spectroscopy. Thin
            Solid Films 394(1): 44-48.
  
           Vu, Q.T. 1970. Space-charge-limited
            current in fast neutron irradiated silicon. Dissertation (Ph.D.),
            California Institute of Technology. https://doi.org/10.7907/T93C-DG21 Warbinek, J., Leimbach, D., Lu, D., Wendt, K., Pegg, D. J., Yurgens, A. & Welander, J. 2019. A graphene-based neutral particle detector. Applied Physics Letters 114(6): 61902. 
            
 Wu, J-B., Lin, M-L., Cong, X., Liu, H-N. & Tan,
            P.H. 2018. Raman spectroscopy of graphene-based materials and its applications
            in related devices. Chemical Society Reviews 47(5): 1822-1873.
            https://doi.org/10.1039/c6cs00915h
  
           Xia, F., Perebeinos, V.,
            Lin, Y-M., Wu, Y. & Avouris, P. 2011. The origins
            and limits of metal–graphene junction resistance. Nature Nanotechnology 6(3): 179-184. https://doi.org/10.1038/nnano.2011.6
  
           Yang, X.H., Guo, W., Yang, S. & Hou, Y.
            2014. A free radical assisted strategy for preparing ultra- small Pt decorated
            CNTs as a highly efficient counter electrode for dye-sensitized solar cells. Journal
              of Material Chemistry A 3: 614-619.
  
           Zhang, T., Cheng, Z., Wang, Y., Li, Z., Wang, C., Li,
            Y. & Fang, Y. 2010. Self-assembled 1-octadecanethiol monolayers on graphene
            for mercury detection. Nano Letters 10(11): 4738-4741.
            https://doi.org/10.1021/nl1032556
  
           Zheng, X., Chen, W., Wang, G., Yu, Y., Qin, S., Fang,
            J., Wang, F. & Zhang, X.A. 2015. The Raman redshift of graphene impacted by
            gold nanoparticles. AIP Advances 5(5): 057133.
            https://doi.org/10.1063/1.4921316
  
           
             
           *Corresponding author; email: nurulhidayah@um.edu.my   
             
           
            
           
           
           
           
           
                 
              
           
            
            
               
             |