Sains Malaysiana 52(10)(2023): 2955-2970

http://doi.org/10.17576/jsm-2023-5210-17

 

Effects of High-Energy Electron Beam Irradiation on the Structure, Composition and Morphological Properties of Graphene Nanoplatelet Films

(Kesan Penyinaran Rasuk Elektron Bertenaga Tinggi pada Struktur, Komposisi dan Sifat Morfologi Filem Nanoplatelet Grafin)

 

NURUL HIDAYAH MOHAMAD NOR1,2,*, NUR AFIRA ANUAR1, NOOR AZRINA TALIK1, WAN AHMAD TAJUDDIN WAN ABDULLAH2, KRITSADA KITTIMANAPUN3, HIDEKI NAKAJIMA3, NARONG CHANLEK3, MOHD FAKHARUL ZAMAN RAJA YAHYA4 & BOON TONG GOH1

 

1Low Dimensional Material Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2National Centre for Particle Physics, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

3Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand

4Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

Received: 18 August 2023/Accepted: 21 September 2023

 

Abstract

This work demonstrated the effects of 1.2 GeV high-energy electron beam irradiation on a few-layers of graphene (FLG) and multi-layer graphene (MLG) films grown via an in-house hot wire chemical vapour deposition (HWCVD) system. The FLG and MLG films were grown on highly doped n-type c-Si (100) substrates which were pre-treated using argon plasma (50 W) for 1 min and 10 min, respectively. The as-prepared samples were then irradiated using a 1.2 GeV high-energy electron beam with a dosage of 1.2 × 109 e-/cm2 at atmospheric and room temperature ambient conditions. The effects of the irradiation-mediated defects on the carbon lattice structure of both graphene samples were validated from the decreased sp2 C=C carbon content, and the increase in the adventitious carbon contamination C-O-C content. Raman results showed an elevation of the ID/IG ratio and blue-shift of the 2D and G band peaks for both the irradiated samples, which validated the mediated defects due to the dislocation of carbon atoms in the graphene sheets. The blue-shifted of 2D and G peaks were much more significant in the MLG than FLG which may indicate a better self-reconstructing property for the MLG atomic network, compared to the FLG. The stability of the films against high-energy electron beam irradiation was validated by their conductivity and surface topography. In conclusion, HWCVD grown graphene nanoplatelet films have high potential for graphene-based high-energy charged particle detectors.

 

Keywords: Graphene; high-energy electron beam; HWCVD; nanoplatelets; radiation tolerance

 

Abstrak

Kajian ini menunjukkan kesan penyinaran radiasi elektron bertenaga tinggi 1.2 GeV pada beberapa lapisan grafin (FLG) dan berbilang lapisan grafin (MLG) yang dihasilkan melalui kaedah wayar panas pemendapan wap kimia (HWCVD). Filem FLG dan MLG dihasilkan pada permukaan substrat c-Si (100) jenis-n berdop tinggi yang telah dirawat terlebih dahulu menggunakan plasma argon (50 W) selama 1 minit dan 10 minit. Sampel yang telah disediakan kemudiannya disinari menggunakan radiasi elektron bertenaga tinggi 1.2 GeV dengan dos 1.2 × 109 e-/cm2 pada keadaan atmosfera dan suhu bilik. Kesan radiasi dalam menghasilkan kecacatan pada struktur kekisi karbon kedua-dua sampel grafin telah disahkan daripada pengurangan kandungan karbon sp2 C=C serta peningkatan kandungan kontaminasi karbon adventif C-O-C. Analisis Raman menunjukkan peningkatan nisbah ID/IG dan anjakan-biru bagi puncak jalur 2D dan G untuk kedua-dua sampel yang disinari, yang mengesahkan kecacatan pengantara disebabkan oleh kehelan atom karbon dalam helaian grafin. Anjakan-biru puncak 2D dan G adalah lebih ketara dalam MLG berbanding FLG yang mungkin menunjukkan sifat membina semula diri yang lebih baik untuk rangkaian atom MLG, berbanding FLG. Kestabilan filem terhadap penyinaran radiasi elektron bertenaga tinggi telah disahkan oleh kekonduksian dan topografi permukaannya. Kesimpulannya, filem nanoplatelet grafin yang dihasilkan menggunakan kaedah HWCVD ini mempunyai potensi tinggi untuk menghasilkan pengesan zarah bercas tenaga tinggi berasaskan grafin.

 

Kata kunci: Grafin; HWCVD; nanoplatelet; sinaran elektron bertenaga tinggi; toleransi radiasi

 

REFERENCES

Al-Harthi, S.H., Elzain, M., Al-Barwani, M., Kora'a, A., Hysen, T., Myint, M.T. & Anantharaman, M.R. 2012. Unusual surface and edge morphologies, sp2 to sp3 hybridized transformation and electronic damage after Ar+ ion irradiation of few-layer graphene surfaces. Nanoscale Research Letters 7: 466. https://doi.org/10.1186/1556-276x-7-466

Ang, P.K., Chen, W., Wee, A.T. & Loh, K.P. 2008. Solution-gated epitaxial graphene as pH sensor. Journal of the American Chemical Society 130(44): 14392-14393. https://doi.org/10.1021/ja805090z

Anuar, N.A., Nor, N.H., Awang, R. binti, Nakajima, H., Tunmee, S., Tripathi, M., Dalton, A. & Goh, B.T. 2021. Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition. Surface and Coatings Technology 411: 126995. https://doi.org/10.1016/j.surfcoat.2021.126995

Asif, M., Tan, Y., Pan, L., Li, J., Rashad, M. & Usman, M. 2015. Thickness controlled water vapors assisted growth of multilayer graphene by ambient pressure chemical vapor deposition. The Journal of Physical Chemistry C 119(6): 3079-3089. https://doi.org/10.1021/jp510106w

Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y-J., Kim, K.S., Özyilmaz, B., Ahn, J-H., Hong, B.H. & Iijima, S. 2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 5(8): 574-578. https://doi.org/10.1038/nnano.2010.132

Chandra, N., Sharma, V., Chung, G.Y. & Schroder, D.K. 2011. Four-point probe characterization of 4H silicon carbide. Solid-State Electronics 64(1): 73-77. https://doi.org/10.1016/j.sse.2011.07.004

Chatzikyriakou, E., Smyrnis, C. & Chatwin, C. 2014. Monte Carlo simulation of electron and proton irradiation of carbon nanotube and graphene transistors. Advances in Microelectronic Engineering (AIME) 2(2): 33-37.

Childres, I., Jauregui, L.A., Foxe, M., Tian, J., Jalilian, R., Jovanovic, I. & Chen, Y.P. 2010. Effect of electron-beam irradiation on graphene field effect devices. Applied Physics Letters 97(17): 173109. https://doi.org/10.1063/1.3502610

Cooper, D.R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E. & Yu, V. 2012. Experimental review of graphene. ISRN Condensed Matter Physics 2012: 501686. https://doi.org/10.5402/2012/501686

Cummings, A.W., Duong, D.L., Nguyen, V.L., Van Tuan, D., Kotakoski, J., Barrios Vargas, J.E., Lee, Y.H. & Roche, S. 2014. Charge transport in polycrystalline graphene: Challenges and opportunities. Advanced Materials 26(30): 5079-5094. https://doi.org/10.1002/adma.201401389

Díaz, J., Paolicelli, G., Ferrer, S. & Comin, F. 1996. Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Physical Review B 54(11): 8064-8069. https://doi.org/10.1103/physrevb.54.8064

Dresselhaus, M.S., Dresselhaus, G., Saito, R. & Jorio, A. 2005. Raman spectroscopy of carbon nanotubes. Physics Reports 409(2): 47-99.

Elakrmi, E., Chaâbane, R.B. & Ouada, H.B. 2011. Structure and electrical properties of nanostructured zinc oxide films prepared for optoelectronic applications. Physical Sciences 2(1): ea0111. https://doi.org/https://akademeia.ca/pdf/vol2-iss1/Elakrmietal(2012)-2-1-ea0111.pdf

Greczynski, G. & Hultman, L. 2020. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Progress in Materials Science 107: 100591. https://doi.org/10.1016/j.pmatsci.2019.100591

Haerle, R., Riedo, E., Pasquarello, A. & Baldereschi, A. 2002. sp2/sp3 hybridization ratio in amorphous carbon from C1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Physical Review B 65: 045101.

Iqbal, M.Z., Kumar Singh, A., Iqbal, M.W., Seo, S. & Eom, J. 2012. Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition. Journal of Applied Physics 111(8): 084307. https://doi.org/10.1063/1.4704197

Kang, J., Duan, Y., Gao, W., Li, H., Li, C., Zhao, X. & Zhu, C. 2022. Transparency of graphene membranes to eV-scale electrons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1031:166521.

Karamat, S., Sonuşen, S., Dede, M., Uysallı, Y., Özgönül, E. & Oral, A. 2015. Coalescence of few layer graphene grains grown by chemical vapor deposition and their stacking sequence. Journal of Materials Research 31(1): 46-54. https://doi.org/10.1557/jmr.2015.350

Kim, K-J., Choi, J., Lee, H., Lee, H-K., Kang, T-H., Han, Y-H., Lee, B-C., Kim, S. & Kim, B. 2008. Effects of 1 MeV electron beam irradiation on multilayer graphene grown on 6H-sic(0001). The Journal of Physical Chemistry C 112(34): 13062-13064. https://doi.org/10.1021/jp805141e

Kittimanapun, K., Chanlek, N., Lakrathok, A. & Laoiamnongwong, N. 2018. Low intensity electron beam measurement at SLRI beam test facility. Proc. 9th Int. Particle Accelerator Conf. (IPAC'18). pp. 4502-4504. https://doi.org/10.18429/JACoW-IPAC2018-THPMK086

Kittimanapun, K., Chanlek, N., Juntong, N., Cheedket, S., Klysubun, P., Krainara, S., Sittisard, K. & Supajeerapan, S. 2016. SLRI beam test facility development project.  Proc. 7th Int. Particle Accelerator Conf. (IPAC'16). pp. 2539-2541. doi: 10.18429/JACoW-IPAC2016-WEPMY002

Kochat, V., Nath Pal, A., Sneha, E.S., Sampathkumar, A., Gairola, A., Shivashankar, S.A., Raghavan, S. & Ghosh, A. 2011. High contrast imaging and thickness determination of graphene with in-column secondary electron microscopy. Journal of Applied Physics 110(1): 014315. https://doi.org/10.1063/1.3608062

Krasheninnikov, A.V. & Banhart, F. 2007. Engineering of nanostructured carbon materials with electron or ion beams. Nature Materials 6(10): 723-733. https://doi.org/10.1038/nmat1996

Kumari, R., Singh, F., Yadav, B.S., Kotnala, R.K., Peta, K.R., Tyagi, P.K., Kumar, S., Puri, N.K. 2017. Ion irradiation-induced, localized sp2 to sp3 hybridized carbon transformation in walls of multiwalled carbon nanotubes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 412 : 115–122. https://doi.org/10.1016/j.nimb.2017.09.019

Lee, C., Wei, X., Kysar, J.W. & Hone, J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388. https://doi.org/10.1126/science.1157996

Lee, C., Kim, J., Kim, S., Chang, Y.J., Kim, K.S., Hong, B. & Choi, E.J. 2016. Strong hole-doping and robust resistance-decrease in proton- irradiated graphene. Nature Publishing Group 6: 21311.

Lesiak, B., Kövér, L., Tóth, J., Zemek, J., Jiricek, P., Kromka, A. & Rangam, N. 2018. C sp2/sp3 hybridisations in carbon nanomaterials - XPS and (X)AES study. Applied Surface Science 452: 223-231. https://doi.org/10.1016/j.apsusc.2018.04.269

Li, Y., Li, J., Jia, C. & Liu, X. 2012. Fabrication of tungsten films by metallorganic chemical vapor deposition. International Journal of Minerals, Metallurgy, and Materials 19(12): 1149-1153.

Liao, W., Alles, M.L., Zhang, E.X., Fleetwood, D.M., Reed, R.A., Weller, R.A. & Schrimpf, R.D. 2019. Monte Carlo simulation of displacement damage in graphene. IEEE Transactions on Nuclear Science 66(7): 1730-1737.

Lin, Y.M., Jenkins, K.A., Valdes-Garcia, A., Small, J.P., Farmer, D.B. & Avouris, P. 2009. Operation of graphene transistors at gigahertz frequencies. Nano Letters 9(1): 422-426. https://doi.org/10.1021/nl803316h

Liu, G., Teweldebrhan, D. & Balandin, A.A. 2011. Tuning of graphene properties via controlled exposure to electron beams. IEEE Transactions on Nanotechnology 10(4): 865-870. https://doi.org/10.1109/tnano.2010.2087391

Lu, G., Ocola, L.E. & Chen, J. 2009. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44): 445502. https://doi.org/10.1088/0957-4484/20/44/445502

Malard, L.M., Pimenta, M.A., Dresselhaus, G. & Dresselhaus, M.S. 2009. Raman spectroscopy in graphene. Physics Reports 473(5-6): 51-87.

Mathew, S., Chan, T.K., Zhan, D., Gopinadhan, K., Barman, A.R., Breese, M.B.H., Dhar, S., Shen, Z.X., Venkatesan, T. & Thong, J.T.L. 2011. The effect of layer number and substrate on the stability of graphene under MeV proton beam irradiation. Carbon 49(5): 1720-1726. https://doi.org/10.1016/j.carbon.2010.12.057

Meyer, J.C., Eder, F., Kurasch, S., Skakalova, V., Kotakoski, J., Park, H.J., Roth, S., Chuvilin, A., Eyhusen, S., Benner, G., Krasheninnikov, A.V. & Kaiser, U. 2012. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Physical Review Letters 108: 196102, Erratum 110: 239902. https://doi.org/10.1103/physrevlett.108.196102

Moser, J., Barreiro, A. & Bachtold, A. 2007. Current-induced cleaning of graphene. Applied Physics Letters 91(16): 163513. https://doi.org/10.1063/1.2789673

Murakami, K., Kadowaki, T. & Fujita, J. 2013. Damage and strain in single-layer graphene induced by very-low-energy electron-beam irradiation. Applied Physics Letters 102: 043111.

Nor, N.H.M., Anuar, N.A., Abdullah, W.A.T.W., Goh, B.T. & Yahya, M.F.Z.R. 2022. A Geant4 simulation on the application of multi-layer graphene as a detector material in high-energy physics. Sains Malaysiana 51(10): 3423-3436.

Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z. & Sheehan, P.E. 2008. Reduced graphene oxide molecular sensors. Nano Letters 8(10): 3137-3140. https://doi.org/10.1021/nl8013007

Röhr, J.A., Moia, D., Haque, S.A., Kirchartz, T. & Nelson, J. 2018. Exploring the validity and limitations of the mott–gurney law for charge-carrier mobility determination of semiconducting thin-films. Journal of Physics: Condensed Matter 30(10): 105901. https://doi.org/10.1088/1361-648x/aaabad

Ryu, S., Liu, L., Berciaud, S., Yu, Y., Liu, H., Kim, P., Flynn, G.W. & Brus, L.E. 2010. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 10(12): 4944-4951.

Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. & Novoselov, K.S. 2007. Detection of individual gas molecules adsorbed on graphene. Nature Materials 6(9): 652-655. https://doi.org/10.1038/nmat1967

Serry, M., Sharaf, A.H., Emira, A., Abdul-Wahed, A. & Gamal, A. 2015. Nanostructured graphene–Schottky junction low-bias radiation sensors. Sensors and Actuators A: Physical 232: 329-340. https://doi.org/10.1016/j.sna.2015.04.031

Shulman, H. & Ginell, W.S. 1970. Nuclear and Space Radiation Effects on Materials. NASA Space Vehicle Design Criteria (Structures).

Slobodian, O.M., Tiagulskyi, S.I., Nikolenko, A.S., Stubrov, Y., Gomeniuk, Y.V., Lytvyn, P.M. & Nazarov, A.N. 2018. Micro-raman spectroscopy and electrical conductivity of graphene layer on SIO2 dielectric subjected to electron beam irradiation. Materials Research Express 5(11): 116405. https://doi.org/10.1088/2053-1591/aadde3

Song, W., Lee, S. Il, Kim, Y., Jung, D.S., Jung, M.W., An, K.S. & Park, C.Y. 2013. Effect of MeV electron beam irradiation on graphene grown by thermal chemical vapor deposition. Japanese Journal of Applied Physics 52(12).

Syed, M.H. 2017. Growth and characterization of graphene and graphene/Copper oxide nanocomposites by hot-filament thermal chemical vapor deposition for flexible pressure sensor application. University of Malaya. Thesis (Unpublished) http://studentsrepo.um.edu.my/7208/

Syed, M.H., Chong, S.K., Huang, N.M. & Abdul Rahman, S. 2015. Fabrication of high-quality graphene by hot-filament thermal chemical vapor deposition. Carbon 86: 1-11.

Teweldebrhan, D. & Balandin, A.A. 2009. Modification of graphene properties due to electron-beam irradiation. Applied Physics Letters 94(1): 013101. https://doi.org/10.1063/1.3062851

Turgeon, S. & Paynter, R.W.U. 2001. On the determination of carbon sp2/sp3 ratios in polystyrene-polyethylene copolymers by photoelectron spectroscopy. Thin Solid Films 394(1): 44-48.

Vu, Q.T. 1970. Space-charge-limited current in fast neutron irradiated silicon. Dissertation (Ph.D.), California Institute of Technology. https://doi.org/10.7907/T93C-DG21

Warbinek, J., Leimbach, D., Lu, D., Wendt, K., Pegg, D. J., Yurgens, A. & Welander, J. 2019. A graphene-based neutral particle detector. Applied Physics Letters 114(6): 61902.

Wu, J-B., Lin, M-L., Cong, X., Liu, H-N. & Tan, P.H. 2018. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews 47(5): 1822-1873. https://doi.org/10.1039/c6cs00915h

Xia, F., Perebeinos, V., Lin, Y-M., Wu, Y. & Avouris, P. 2011. The origins and limits of metal–graphene junction resistance. Nature Nanotechnology 6(3): 179-184. https://doi.org/10.1038/nnano.2011.6

Yang, X.H., Guo, W., Yang, S. & Hou, Y. 2014. A free radical assisted strategy for preparing ultra- small Pt decorated CNTs as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Material Chemistry A 3: 614-619.

Zhang, T., Cheng, Z., Wang, Y., Li, Z., Wang, C., Li, Y. & Fang, Y. 2010. Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Letters 10(11): 4738-4741. https://doi.org/10.1021/nl1032556

Zheng, X., Chen, W., Wang, G., Yu, Y., Qin, S., Fang, J., Wang, F. & Zhang, X.A. 2015. The Raman redshift of graphene impacted by gold nanoparticles. AIP Advances 5(5): 057133. https://doi.org/10.1063/1.4921316

 

*Corresponding author; email: nurulhidayah@um.edu.my

 

 

 

 

 

 

 

 

 

previous