Sains Malaysiana 52(10)(2023): 2955-2970
http://doi.org/10.17576/jsm-2023-5210-17
Effects of High-Energy Electron Beam Irradiation on the Structure,
Composition and Morphological Properties of Graphene Nanoplatelet Films
(Kesan Penyinaran Rasuk Elektron Bertenaga Tinggi pada Struktur, Komposisi dan Sifat Morfologi Filem Nanoplatelet Grafin)
NURUL HIDAYAH MOHAMAD NOR1,2,*, NUR
AFIRA ANUAR1, NOOR AZRINA TALIK1, WAN AHMAD TAJUDDIN WAN
ABDULLAH2, KRITSADA KITTIMANAPUN3, HIDEKI NAKAJIMA3,
NARONG CHANLEK3,
MOHD FAKHARUL ZAMAN RAJA YAHYA4 & BOON TONG GOH1
1Low Dimensional Material
Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
2National Centre for
Particle Physics, Universiti Malaya, 50603 Kuala Lumpur,
Malaysia
3Synchrotron Light
Research Institute, Nakhon Ratchasima 30000, Thailand
4Faculty of Applied
Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
Received: 18 August 2023/Accepted: 21
September 2023
Abstract
This work demonstrated the effects
of 1.2 GeV high-energy electron beam irradiation on a few-layers of graphene
(FLG) and multi-layer graphene (MLG) films grown via an in-house hot wire
chemical vapour deposition (HWCVD) system. The FLG and MLG films were grown on
highly doped n-type c-Si (100) substrates which were pre-treated using argon
plasma (50 W) for 1 min and 10 min, respectively. The as-prepared samples were
then irradiated using a 1.2 GeV high-energy electron beam with a dosage of 1.2
× 109 e-/cm2 at atmospheric and room
temperature ambient conditions. The effects of the
irradiation-mediated defects on the carbon lattice structure of both graphene
samples were validated from the decreased sp2 C=C carbon content,
and the increase in the adventitious carbon contamination C-O-C content.
Raman results showed an elevation of the ID/IG ratio and
blue-shift of the 2D and G band peaks for both the irradiated samples, which
validated the mediated defects due to the dislocation of carbon atoms in the
graphene sheets. The blue-shifted of 2D and G peaks were
much more significant in the MLG than FLG which may indicate a better
self-reconstructing property for the MLG atomic network, compared to the FLG.
The stability of the films against high-energy electron beam irradiation was
validated by their conductivity and surface topography. In conclusion, HWCVD
grown graphene nanoplatelet films have high potential
for graphene-based high-energy charged particle detectors.
Keywords: Graphene;
high-energy electron beam; HWCVD; nanoplatelets;
radiation tolerance
Abstrak
Kajian ini
menunjukkan kesan penyinaran radiasi elektron bertenaga tinggi 1.2 GeV pada
beberapa lapisan grafin (FLG) dan berbilang lapisan grafin (MLG) yang
dihasilkan melalui kaedah wayar panas pemendapan wap kimia (HWCVD). Filem FLG
dan MLG dihasilkan pada permukaan substrat c-Si (100) jenis-n berdop tinggi
yang telah dirawat terlebih dahulu menggunakan plasma argon (50 W) selama 1
minit dan 10 minit. Sampel yang telah disediakan kemudiannya disinari menggunakan
radiasi elektron bertenaga tinggi 1.2 GeV dengan dos 1.2 × 109 e-/cm2 pada keadaan atmosfera dan suhu bilik. Kesan radiasi dalam menghasilkan
kecacatan pada struktur kekisi karbon kedua-dua sampel grafin telah disahkan
daripada pengurangan kandungan karbon sp2 C=C serta peningkatan
kandungan kontaminasi karbon adventif C-O-C. Analisis Raman menunjukkan
peningkatan nisbah ID/IG dan anjakan-biru bagi puncak
jalur 2D dan G untuk kedua-dua sampel yang disinari, yang mengesahkan kecacatan
pengantara disebabkan oleh kehelan atom karbon dalam helaian grafin.
Anjakan-biru puncak 2D dan G adalah lebih ketara dalam MLG berbanding FLG yang
mungkin menunjukkan sifat membina semula diri yang lebih baik untuk rangkaian
atom MLG, berbanding FLG. Kestabilan filem terhadap penyinaran radiasi elektron
bertenaga tinggi telah disahkan oleh kekonduksian dan topografi permukaannya.
Kesimpulannya, filem nanoplatelet grafin yang dihasilkan menggunakan kaedah
HWCVD ini mempunyai potensi tinggi untuk menghasilkan pengesan zarah bercas
tenaga tinggi berasaskan grafin.
Kata kunci: Grafin; HWCVD; nanoplatelet; sinaran elektron bertenaga tinggi; toleransi radiasi
REFERENCES
Al-Harthi, S.H., Elzain, M., Al-Barwani, M., Kora'a, A., Hysen, T., Myint, M.T. & Anantharaman,
M.R. 2012. Unusual surface and edge morphologies, sp2 to sp3 hybridized transformation and electronic damage after Ar+ ion irradiation of few-layer graphene surfaces. Nanoscale Research Letters 7: 466. https://doi.org/10.1186/1556-276x-7-466
Ang, P.K., Chen, W., Wee, A.T. & Loh,
K.P. 2008. Solution-gated epitaxial graphene as pH sensor. Journal of the
American Chemical Society 130(44): 14392-14393.
https://doi.org/10.1021/ja805090z
Anuar, N.A., Nor, N.H., Awang, R. binti, Nakajima, H., Tunmee,
S., Tripathi, M., Dalton, A. & Goh, B.T. 2021.
Low-temperature growth of graphene nanoplatelets by
hot-wire chemical vapour deposition. Surface and Coatings Technology 411: 126995. https://doi.org/10.1016/j.surfcoat.2021.126995
Asif, M., Tan, Y., Pan, L., Li, J., Rashad, M. &
Usman, M. 2015. Thickness controlled water vapors assisted growth of multilayer graphene by ambient pressure chemical vapor deposition. The Journal of Physical Chemistry C 119(6): 3079-3089. https://doi.org/10.1021/jp510106w
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng,
Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y-J., Kim, K.S., Özyilmaz,
B., Ahn, J-H., Hong, B.H. & Iijima,
S. 2010. Roll-to-roll production of 30-inch graphene films for transparent
electrodes. Nature Nanotechnology 5(8): 574-578.
https://doi.org/10.1038/nnano.2010.132
Chandra, N., Sharma, V., Chung, G.Y. & Schroder,
D.K. 2011. Four-point probe characterization of 4H silicon carbide. Solid-State
Electronics 64(1): 73-77. https://doi.org/10.1016/j.sse.2011.07.004
Chatzikyriakou, E., Smyrnis, C.
& Chatwin, C. 2014. Monte Carlo simulation of
electron and proton irradiation of carbon nanotube and graphene transistors. Advances
in Microelectronic Engineering (AIME) 2(2): 33-37.
Childres, I., Jauregui, L.A., Foxe, M., Tian, J., Jalilian, R., Jovanovic, I. &
Chen, Y.P. 2010. Effect of electron-beam irradiation on graphene field effect
devices. Applied Physics Letters 97(17): 173109. https://doi.org/10.1063/1.3502610
Cooper, D.R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E.
& Yu, V. 2012. Experimental review of graphene. ISRN Condensed Matter
Physics 2012: 501686. https://doi.org/10.5402/2012/501686
Cummings, A.W., Duong, D.L., Nguyen, V.L., Van Tuan,
D., Kotakoski, J., Barrios Vargas, J.E., Lee, Y.H.
& Roche, S. 2014. Charge transport in polycrystalline graphene: Challenges
and opportunities. Advanced Materials 26(30): 5079-5094.
https://doi.org/10.1002/adma.201401389
Díaz, J., Paolicelli, G.,
Ferrer, S. & Comin, F. 1996. Separation of the sp3 and sp2 components in the C1s photoemission spectra of
amorphous carbon films. Physical Review B 54(11): 8064-8069.
https://doi.org/10.1103/physrevb.54.8064
Dresselhaus, M.S., Dresselhaus,
G., Saito, R. & Jorio, A. 2005. Raman
spectroscopy of carbon nanotubes. Physics Reports 409(2): 47-99.
Elakrmi, E., Chaâbane, R.B. & Ouada, H.B. 2011. Structure and electrical properties of
nanostructured zinc oxide films prepared for optoelectronic applications. Physical
Sciences 2(1): ea0111.
https://doi.org/https://akademeia.ca/pdf/vol2-iss1/Elakrmietal(2012)-2-1-ea0111.pdf
Greczynski, G. & Hultman, L. 2020.
X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Progress
in Materials Science 107: 100591.
https://doi.org/10.1016/j.pmatsci.2019.100591
Haerle, R., Riedo,
E., Pasquarello, A. & Baldereschi,
A. 2002. sp2/sp3 hybridization ratio in
amorphous carbon from C1s core-level shifts: X-ray photoelectron
spectroscopy and first-principles calculation. Physical Review B 65:
045101.
Iqbal, M.Z., Kumar Singh, A., Iqbal, M.W., Seo, S. & Eom, J. 2012.
Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition. Journal of Applied Physics 111(8):
084307. https://doi.org/10.1063/1.4704197
Kang, J., Duan, Y., Gao, W., Li, H., Li, C., Zhao, X. & Zhu, C. 2022. Transparency of graphene membranes to eV-scale electrons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1031:166521.
Karamat, S., Sonuşen, S., Dede, M., Uysallı, Y., Özgönül, E. & Oral, A. 2015. Coalescence of few layer
graphene grains grown by chemical vapor deposition
and their stacking sequence. Journal of Materials Research 31(1): 46-54.
https://doi.org/10.1557/jmr.2015.350
Kim, K-J., Choi, J., Lee, H., Lee, H-K., Kang, T-H.,
Han, Y-H., Lee, B-C., Kim, S. & Kim, B. 2008. Effects of 1 MeV electron
beam irradiation on multilayer graphene grown on 6H-sic(0001). The Journal of Physical Chemistry C 112(34): 13062-13064.
https://doi.org/10.1021/jp805141e
Kittimanapun, K., Chanlek, N., Lakrathok, A. & Laoiamnongwong, N.
2018. Low intensity electron beam measurement at SLRI beam test facility. Proc. 9th
Int. Particle Accelerator Conf. (IPAC'18). pp. 4502-4504.
https://doi.org/10.18429/JACoW-IPAC2018-THPMK086
Kittimanapun, K., Chanlek, N., Juntong, N., Cheedket, S., Klysubun, P.,
Krainara, S., Sittisard, K. & Supajeerapan, S. 2016. SLRI beam test
facility development project. Proc. 7th Int. Particle Accelerator Conf. (IPAC'16). pp.
2539-2541. doi: 10.18429/JACoW-IPAC2016-WEPMY002
Kochat, V., Nath Pal, A., Sneha, E.S., Sampathkumar, A., Gairola, A., Shivashankar, S.A., Raghavan, S. & Ghosh, A. 2011. High contrast imaging
and thickness determination of graphene with in-column secondary electron
microscopy. Journal of Applied Physics 110(1): 014315.
https://doi.org/10.1063/1.3608062
Krasheninnikov, A.V. & Banhart,
F. 2007. Engineering of nanostructured carbon materials with electron or ion
beams. Nature Materials 6(10): 723-733. https://doi.org/10.1038/nmat1996
Kumari, R., Singh, F., Yadav, B.S., Kotnala,
R.K., Peta, K.R., Tyagi, P.K., Kumar, S., Puri, N.K. 2017. Ion irradiation-induced, localized sp2 to sp3 hybridized carbon transformation in walls of multiwalled carbon nanotubes. Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms, 412 : 115–122.
https://doi.org/10.1016/j.nimb.2017.09.019
Lee, C., Wei, X., Kysar,
J.W. & Hone, J. 2008. Measurement of the elastic properties and intrinsic
strength of monolayer graphene. Science 321(5887): 385-388.
https://doi.org/10.1126/science.1157996
Lee, C., Kim, J., Kim, S.,
Chang, Y.J., Kim, K.S., Hong, B. & Choi, E.J. 2016. Strong hole-doping and
robust resistance-decrease in proton- irradiated graphene. Nature Publishing
Group 6: 21311.
Lesiak, B., Kövér, L., Tóth, J., Zemek, J., Jiricek, P., Kromka, A. & Rangam, N. 2018. C sp2/sp3 hybridisations in carbon nanomaterials - XPS and (X)AES study. Applied
Surface Science 452: 223-231. https://doi.org/10.1016/j.apsusc.2018.04.269
Li, Y., Li, J., Jia, C. & Liu, X. 2012. Fabrication of tungsten films
by metallorganic chemical vapor deposition. International
Journal of Minerals, Metallurgy, and Materials 19(12): 1149-1153.
Liao, W., Alles,
M.L., Zhang, E.X., Fleetwood, D.M., Reed, R.A., Weller, R.A. & Schrimpf, R.D. 2019. Monte Carlo simulation of displacement
damage in graphene. IEEE Transactions on Nuclear Science 66(7):
1730-1737.
Lin, Y.M., Jenkins, K.A., Valdes-Garcia, A., Small,
J.P., Farmer, D.B. & Avouris, P. 2009. Operation
of graphene transistors at gigahertz frequencies. Nano Letters 9(1):
422-426. https://doi.org/10.1021/nl803316h
Liu, G., Teweldebrhan, D.
& Balandin, A.A. 2011. Tuning of graphene
properties via controlled exposure to electron beams. IEEE Transactions on
Nanotechnology 10(4): 865-870. https://doi.org/10.1109/tnano.2010.2087391
Lu, G., Ocola, L.E. &
Chen, J. 2009. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44): 445502. https://doi.org/10.1088/0957-4484/20/44/445502
Malard, L.M., Pimenta,
M.A., Dresselhaus, G. & Dresselhaus,
M.S. 2009. Raman spectroscopy in graphene. Physics Reports 473(5-6):
51-87.
Mathew, S., Chan, T.K., Zhan, D., Gopinadhan,
K., Barman, A.R., Breese, M.B.H., Dhar, S., Shen,
Z.X., Venkatesan, T. & Thong, J.T.L. 2011. The
effect of layer number and substrate on the stability of graphene under MeV
proton beam irradiation. Carbon 49(5): 1720-1726.
https://doi.org/10.1016/j.carbon.2010.12.057
Meyer, J.C., Eder, F., Kurasch,
S., Skakalova, V., Kotakoski,
J., Park, H.J., Roth, S., Chuvilin, A., Eyhusen, S., Benner, G., Krasheninnikov,
A.V. & Kaiser, U. 2012. Accurate measurement of electron beam induced
displacement cross sections for single-layer graphene. Physical Review
Letters 108: 196102, Erratum 110: 239902.
https://doi.org/10.1103/physrevlett.108.196102
Moser, J., Barreiro, A. & Bachtold,
A. 2007. Current-induced cleaning of graphene. Applied Physics Letters 91(16): 163513. https://doi.org/10.1063/1.2789673
Murakami, K., Kadowaki, T. & Fujita, J. 2013. Damage and strain in
single-layer graphene induced by very-low-energy electron-beam irradiation. Applied
Physics Letters 102: 043111.
Nor, N.H.M., Anuar, N.A., Abdullah, W.A.T.W., Goh, B.T. & Yahya, M.F.Z.R. 2022. A Geant4 simulation on the
application of multi-layer graphene as a detector material in high-energy
physics. Sains Malaysiana 51(10): 3423-3436.
Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z.
& Sheehan, P.E. 2008. Reduced graphene oxide molecular sensors. Nano
Letters 8(10): 3137-3140. https://doi.org/10.1021/nl8013007
Röhr, J.A., Moia, D., Haque, S.A., Kirchartz, T. &
Nelson, J. 2018. Exploring the validity and limitations of the mott–gurney law for charge-carrier mobility determination
of semiconducting thin-films. Journal of Physics: Condensed Matter 30(10): 105901. https://doi.org/10.1088/1361-648x/aaabad
Ryu, S., Liu, L., Berciaud, S., Yu, Y., Liu, H., Kim, P., Flynn, G.W. & Brus, L.E. 2010. Atmospheric oxygen binding and hole doping
in deformed graphene on a SiO2 substrate. Nano Lett. 10(12):
4944-4951.
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson,
M.I. & Novoselov, K.S. 2007. Detection of
individual gas molecules adsorbed on graphene. Nature Materials 6(9):
652-655. https://doi.org/10.1038/nmat1967
Serry, M., Sharaf, A.H., Emira, A., Abdul-Wahed, A. &
Gamal, A. 2015. Nanostructured graphene–Schottky junction low-bias radiation sensors. Sensors and Actuators A: Physical 232: 329-340. https://doi.org/10.1016/j.sna.2015.04.031
Shulman, H. & Ginell,
W.S. 1970. Nuclear and Space Radiation Effects on Materials. NASA Space
Vehicle Design Criteria (Structures).
Slobodian, O.M., Tiagulskyi, S.I., Nikolenko, A.S., Stubrov, Y., Gomeniuk, Y.V., Lytvyn, P.M.
& Nazarov, A.N. 2018. Micro-raman spectroscopy and electrical conductivity of graphene layer on SIO2 dielectric subjected to electron beam irradiation. Materials Research
Express 5(11): 116405. https://doi.org/10.1088/2053-1591/aadde3
Song, W., Lee, S. Il, Kim, Y., Jung, D.S., Jung, M.W., An, K.S. & Park, C.Y. 2013. Effect of MeV electron beam irradiation on graphene grown by thermal chemical vapor deposition. Japanese Journal of Applied Physics 52(12).
Syed, M.H. 2017. Growth and characterization
of graphene and graphene/Copper oxide nanocomposites by hot-filament thermal
chemical vapor deposition for flexible pressure sensor application. University
of Malaya. Thesis (Unpublished) http://studentsrepo.um.edu.my/7208/
Syed, M.H., Chong, S.K.,
Huang, N.M. & Abdul Rahman, S. 2015. Fabrication of high-quality graphene
by hot-filament thermal chemical vapor deposition. Carbon 86: 1-11.
Teweldebrhan, D. & Balandin, A.A.
2009. Modification of graphene properties due to electron-beam irradiation. Applied
Physics Letters 94(1): 013101. https://doi.org/10.1063/1.3062851
Turgeon, S. & Paynter, R.W.U. 2001. On the determination of carbon sp2/sp3 ratios in polystyrene-polyethylene copolymers by photoelectron spectroscopy. Thin
Solid Films 394(1): 44-48.
Vu, Q.T. 1970. Space-charge-limited
current in fast neutron irradiated silicon. Dissertation (Ph.D.),
California Institute of Technology. https://doi.org/10.7907/T93C-DG21
Warbinek, J., Leimbach, D., Lu, D., Wendt, K., Pegg, D. J., Yurgens, A. & Welander, J. 2019. A graphene-based neutral particle detector. Applied Physics Letters 114(6): 61902.
Wu, J-B., Lin, M-L., Cong, X., Liu, H-N. & Tan,
P.H. 2018. Raman spectroscopy of graphene-based materials and its applications
in related devices. Chemical Society Reviews 47(5): 1822-1873.
https://doi.org/10.1039/c6cs00915h
Xia, F., Perebeinos, V.,
Lin, Y-M., Wu, Y. & Avouris, P. 2011. The origins
and limits of metal–graphene junction resistance. Nature Nanotechnology 6(3): 179-184. https://doi.org/10.1038/nnano.2011.6
Yang, X.H., Guo, W., Yang, S. & Hou, Y.
2014. A free radical assisted strategy for preparing ultra- small Pt decorated
CNTs as a highly efficient counter electrode for dye-sensitized solar cells. Journal
of Material Chemistry A 3: 614-619.
Zhang, T., Cheng, Z., Wang, Y., Li, Z., Wang, C., Li,
Y. & Fang, Y. 2010. Self-assembled 1-octadecanethiol monolayers on graphene
for mercury detection. Nano Letters 10(11): 4738-4741.
https://doi.org/10.1021/nl1032556
Zheng, X., Chen, W., Wang, G., Yu, Y., Qin, S., Fang,
J., Wang, F. & Zhang, X.A. 2015. The Raman redshift of graphene impacted by
gold nanoparticles. AIP Advances 5(5): 057133.
https://doi.org/10.1063/1.4921316
*Corresponding author; email: nurulhidayah@um.edu.my
|